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The multifractal properties of maps of the circle exhibited in the preceding paper 
are analyzed from a simplified approach to the renormalization group of 
Kadanoff. This "second" renormalization group transformation, whose formula- 
tion and interpretation are discussed here, acts on the space of one-time- 
differentiable coordinate changes which associate a map on the critical manifold 
to the fixed point of the usual renormalization group. While the dependence of 
the multifractal moments on the starting point can be described statistically, and 
in particular through universal amplitude ratios as in paper I, it is shown that 
Fourier analysis is another possible approach. For all multifractal moments, the 
low-frequency Fourier coefficients have a universal self-similar scaling behavior 
analogous to that found for the usual spectrum of circle maps. In the case of the 
first moment, it is demonstrated that the Fourier coefficients are, within 
constants, equal to the usual spectrum. The relation between amplitude ratios 
and Fourier coefficients is established and it is demonstrated that the universal 
values of the ratios come from the universal low-frequency Fourier coefficients. 
Since, for the universal ratios arising in the statistical description, the scaling 
regime is much more easily accessible than for the spectrum, the statistical 
approach described in paper I should be more convenient for experiments and 
could become an alternative to the usual spectral description. The universal 
statistical description of the multifractal moments adopted here is possible 
because the choice of the a priori probability for the starting point is 
demonstrated to be irrelevant. 
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1. I N T R O D U C T I O N  

In the preceding paper (referred to as I), it has been shown that the 
multifractal properties of maps of the circle at and near criticality can be 
formulated in a way which closely parallels the phenomenology of critical 
phenomena. This approach offers the advantage of focusing on not only the 
exponents, but also the analog of universal amplitude ratios, which should 
be accessible from the same experiments which extract exponents. The 
purpose of this second part is to provide analytical arguments as well as 
interpretations for some of the results of I. There already exists a 
renormalization group (RG) approach, due to Kadanoff, (1) for the multi- 
fractal properties of maps of the circle (2) at the golden-mean rotation 
number. The main contribution of the present approach is to simplify the 
formalism of Kadanoff (1) and to provide further understanding of the 
universal nature of the multifractal properties and of their relation to the 
usual RG for maps of the circle. (3 5) While the universality of multifractal 
exponents folows from the analysis of Kadanoff, here it is further shown, 
using Fourier analysis, that the universal value of the ratios defined in I is 
concomitant with a scaling taw analogous to the one characterizing the 
spectrum at the onset of chaos. The point of this study of Fourier 
coefficients is to demonstrate that, when the multifractal amplitudes 
introduced in I are taken into account, the multifractal and spectral 
analyses are two alternate ways to characterize the universal properties of 
the trajectory. In the case of the q = 1 multifractal moment, this connection 
is clearly established and the universal character of the amplitude ratios is 
demonstrated to derive from the low-frequency limit of the spectrum. 

Section2 recalls the statement of the problem in terms of the 
homeomorphism which relates, by a coordinate change, a map to a pure 
rotation with the same rotation number. For a mean rotation number 
equal to the golden mean, Section3 formulates the "second" RG (1~ 
characterizing the multifractal properties of the trajectory. This "second" 
RG analysis relies on the formulation of Rand et  aL ~3'4) for the RG 
describing the transition to chaos via the quasiperiodic route. As a first 
illustration, it is explicitly shown how the linear approximation of Rand 
et  al. to the fixed-point function leads to a very accurate formula for the 
multifractal exponents r(q). Finally, in Section4, this renormalilzation 
group analysis is shown to imply that the ratios computed in the preceding 
paper are indeed universal. Although little is rigorously proved in the 
general case of an arbitrary multifractal moment, our Fourier analysis 
exhibits the similarities with the properties of the spectrum of maps of the 
circle at the onset of chaos. As in the latter case, the Fourier coefficients of 
the multifractal moments, considered as a function of the starting point of 
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the series, are self-similar in the low-frequency limit and the universal 
values of the ratios introduced in I follow from the low-frequency 
universality. In that limit, they obey a fixed-point equation which can be 
naturally derived using the results of Section 3. We present a numerical 
analysis to support these results. In the case of the q =  1 multifractal 
moment, the analytical analysis can be pushed further to show explicitly 
that the Fourier coefficients of the q = 1 moment are a simple function of 
the spectrum. Further discussion of the significance of the RG for multi- 
fractal properties and its relation to the usual RG analysis may be found 
in the conclusion. 

Two appendices contain detailed proofs. The first one shows explicitly 
how the averages of multifractal moments with respect to the starting point 
are independent of the a priori probability distribution. In the second 
appendix, it is demonstrated that the averaged multifractal moments are 
related to the conjugacy to a pure rotation, a result which was implicitly 
assumed in ref. 1. In the sequel, we follow the notations of Rand eta/. (3'4) 
for the quasiperiodic route to chaos. A short version of this paper has 
appeared, and an early version of the complete work is contained in a 
Ph.D. thesis. (6) 

2. S T A T E M E N T  OF THE PROBLEM: THE C O N J U G A C Y  TO A 
PURE ROTATION 

Given a map f of the circle onto itself, let h be the conjugate 
homeomorphism to a pure rotation with the same rotation number 
[-Eq. (20) and (21) of paper I or Eq. (4) below]. The purpose of this sec- 
tion is to show that the problem of the multifractal moments can be stated 
in terms of this change of coordinate and, as a result, the average multi- 
fractal moments can be expressed as moments of finite-difference slopes of 
h. Although h is not differentiable at the critical point, it is known (3-5~ that 
it obeys two functional fixed-point identities on its domain of definition. 
From these fixed-point equations, it is possible to recover the renormaliza- 
tion group formalism of Kadanoff for the multifractal properties. 

Let us first consider this coordinate change in terms of the original 
map of the circle. For  our purpose, it suffices to know that the conjugacy 
of a circle map f to a pure rotation can be obtained (see ref. 7 for a 
discussion on this point) by considering the n-infinite limit for the series of 
functions (p is the mean winding number as in I), 

g.(x) - I  ~ [f(~)(x)-kp] (I) 
nk_l  
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which gives the inverse homeomorphism (7's) h ~ (as in I) as n ~ oo. In 
other words, if we let 

h - l -  g = - lim g,(x)  (2) 
t t ~ o o  

then 

g o f  =Rpog  (3) 

or, with g = h  1, 

f oh=hoRp or f =hoRpoh -~ (4) 

where Rp is a pure rotation with rotation number p. Thus, Eq. (1) defines 
a change of coordinate to a pure rotation with the same rotation number. 

Because of (1), the moments of the closest-return distrances, 
Mq(Fn, X l )  , defined by Eq. (10) of I, are related to h by 

It/ )) ((Mq(F,,  x l ) ) ) = ~ + 1  Y' If(F")(xi)--xil q (5a) 
l <~ i <~ Fn + i 

S ] h ( u - ( - a ) n ) - h ( u ) ] q  du (5b) 
_ 0 - 2  

where the brackets refer to an average over the starting point xl. In 
Appendix A, it is shown that the result (5a) is independent of the a priori 
probability distribution for the starting of the sequence. A proof of Eq. (5b) 
and of Eq. (1) is presented in Appendix B. An alternate heuristic proof of 
Eq. (5) would follow the steps of Eqs. (25)-(29) below. 

We can now give a simple picture for the multifractal moments in 
terms of the homeomorphism h. As n goes to infinity, cr n tends to zero and 
Eq. (5) can be interpreted as the average, over the interval [ - 0  -2, a],  of 
powers of the finite-difference slopes of h(u). Indeed, as noted by 
Kadanoff, (1) the scaling properties of Eq. (5) are related to differential 
properties of h. To illustrate this point, let us assume that the first-order 
approximation 

h(u - ( - ~)') - h(u) ~- - (  - a)" dh/du (6) 

holds everywhere, but at a finite number of points. The scaling properties 
of the moments are then obtained from 

f s f ~ I h ( u - ( - 0 - ) n ) - h ( u ) l q  d u _ ~  "q Idh/dul" d u - F Z 2  <q) l (7) 
--er 2 - - ~  
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which gives a linear dependence r ( q ) = q - 1  for the exponents [Fn+~l 
an(1 + a 2 ) ] .  This contradicts  the numerical results at the critical point  
where v(q) is not  a linear function of q. This is unders tood as follows. F r o m  
an operat ional  point  of view, h can be easily obtained numerically by using 
the series defined in (1). As discussed in refs. 3-5 and 7, h is a con t inuous  

increasing function. However,  the hypothesis of differentiability is not  
numerically cor robora ted  at the critical point, (3 5) as is illustrated in Fig. 1 
for the sine map  [Eq.  ( la )  of I ] .  This is the reason for the failure of the 
expansion (6). This is why further progress at the critical point must  rely 
instead on an R G  approach.  

In the sequel, we shall use the functional fixed-point equations for the 
homeomorph i sm which conjugates the universal function f ,  of the fixed 
point  to a pure rotation. Since h sends [ - -~2 ,  a ]  onto  an interval of length 

3,< 
C- 
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Fig. 1. Plot of the homeomorphism h(x)= g l(x) as defined by Eq. (1) when the control 
parameters are taken at their critical values for the standard map defined in Eq. (la) of I. 
As explained in the text, the multifractal moment of order q is the average qth moment 
of the coarse-grained slope of this function at scale a" {i.e., the average of 
[ h ( x - ( - a ) " ) - h ( x ) [ q a  -nq over x on an interval of length unity}. If this function were 
differentiable, the multifractal exponents would be a trite linear function of the order of the 
moment. Following refs. 3-5, this function is, however, nowhere differentiable, as can be 
guessed from the rapid fluctuations of the slope. 
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1, we can define, in conformity with the notation of Rand et  aL, (3"4) the 
domain of the map f ,  as [(cr 1) l, cr162 1)-1],  where c~ is the universal 
constant found by Shenker (5) ( e =  -1.28...). In refs. 3 and 4, then, it is 
shown that h ,  satisfies the following fixed-point equations: 

~ if--aa<o<~a3;h*(O)E[~z 1-" 1' ~----11 

h,(O) = ( 8 a )  

~ f , - 1  ~ -2h ,  if ~3<~O<<.G;h,(O)e 

(8b) 

From these equations, a "'second" RG is derived below. The set ~(q) comes 
from the "dominant" eigenvalues of this "second" RG. We use this 
terminology because the properties of the second RG are controlled by 
those of the usual (first) one [Eqs. (8)], whereas none of the operators of 
the first RG depend on, or are modified by, those of the second. 

3. THE  R E N O R M A L I Z A T I O N  G R O U P  

The starting point of the following approach is the coordinate change 
between a critical map of the circle (i.e., a map on the critical manifold) 
and the fixed point f ,  of the renormalization group. By definition, this 
coordinate change relates f to f ,  as follows: 

f =Aof, o}f-i (9) 

where Rand (9)'4 has recently proved that A is at least one-time differentiable 
when f is on the critical manifold of the golden-mean fixed point. By using 
the definition f ,  oh,=h, oRo of the fixed-point homeomorphism, one 
obtains 

fo~oh, = ~ o h ,  oR~ (10) 

As a consequence, the homeomorphism which conjugates f to a pure 
rotation is ,~ o h , .  From Eq. (5), the average multifractal moment can now 
be rewritten as 

I~o h,(u - ( - ~ ) n / -  ~ o  h , ( u ) l  ~ au (11) 
_ o - 2  

4 The invariance of the z(q) with respect to homeomorphic conjugacies which are lipschitz 
continuouos as also been discussed by A. Arneodo and M. Holschneider. (1~ If this conjugacy 
is not of that type, these authors show that the maps are not in the same universality class. 
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and the integrand can be approximated by expanding A to linear order, 
since ,g is differentiable 

i 
cy 

t q I h , ( u - ( - ~ ) n ) - h , ( u ) l  q I~ (h,(u))l du 
cy 2 

(12) 

To construct a renormalization group in the space of the at least one- 
time differentiable changes of coordinate ~, the functional fixed-point 
equations (8) will be used to relate the functional (12) at different time 
scales (i.e., different n). 

To derive this scaling relationship, it suffices to split the integral in 
Eq. (12) in the two intervals [ _ _ 0 - 2  0 . 3 ]  and [0-3, e l .  For the first one, we 
change the variable to v = -u /~  and by using Eq. (8), we obtain 

gr3 

I ' q t h , ( . - ( - 0 - ) " ) - h , ( u ) l  ~ I~ (h,(u))l du 
0-2 

/ q =o-I~1 Ih , (~ - ( -0 - )  n 1)-h,(v)l~l~(h,(v)/~)l dv (13) 
- -  ~7 2 

Actually, Eq. (13) defines a functional transformation, so that the right- 
hand side can be rewritten as 

f 
o" 

0- Ih , (v - ( -0 - )n -~) -h , (~ ) t  q I~,E~9(h,(v))lq dv (14) 
- -  ~7 2 

where ~ l [ ~ ] (x )  is a function of argument x, defined by 

N~[ ,4] (x) -~x  x ~ ~ ; x e [ ( ~ - l ) - l , c ~ ( ~ - l )  ~] (15) 

For the second integral, the change of variable v = u/o- 2 - 1 leads to 

3 

n q t q I h . ( u - ( - ~ )  ) -h , (u ) t  I~(h,(~))l du 

;o 
=~2 dv {Ih,(0-Z(v+ l ) - ( - ~ r ) ~ ) - h , ( a 2 ( v +  l))iq 

0.2 

t 2 • I~ {h,(0- (~ + 11)}1 q} (16) 

In order to get a second scaling relationship, it suffices to use (8b) to 
obtain 
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h ,{~[v  + 1] - ( -  ~)~} - h, {~(~ + 1)} 

= f ,  l(~-~h,{~_ ( _ ~ ) . - ~ } ) _ f ,  1(~ ~,(~)) 

~- (h , {v - ( -a ) " -2} -h , ( v ) ) •  2df, 1/dx[~=~-2h,(~ (17) 

the last step being justified by the fact (~/ that the derivative of f ,  x is 
bounded on the interval considered in Eq. (17), since it does not include 
the origin. 

By using the chain rule for the derivative, Eq. (17) can now be written 
as 

3 I h , ( u -  ( - a ) " ) -  h , (u) l  ~ I~'(h,(u)) l  ~ du 

=a2 i h , ( v_ (_~ ) . -2 )_h , ( v ) l  q [~2[~](h,(v))l~ dv 
_ t y  2 

where the second functional transformation -~2 is defined by 

~ 2 [ # ] ( x ) =  d [ # o / . ' o a - 2 ] ( x ) ;  x m [ ( ~ - l )  1, a ( ~ _ l )  l] 

(18) 

(19) 

N1 and N2 define two functional transformations for coordinate 
changes A and both transformations are coupled under successive scale 
transformations. Let us remark that N2 is related to N1 by 

~2 [#] = ~1 ['~ o f ,  l o ~-1] (20) 

It is now possible to make connection with the result of refi 1. Let us 
assume that # is an eigenvector in the sense that 

S [ h , ( v - ( - a )  n l ) - h , ( v ) l q  ]~l[A](h,(v))lq dv 
__~2 

S _~a ~(q)+l [ h , ( v - ( - a ) n - 2 ) - h , ( v ) l  q [Jtl[A](h,(v))[qdv (21) 
~2 

and 

f 
(r n q 

t h , ( u - ( - ~ )  ) -h , (u) l  I~'(h,(u))lq du 
_ •2 

Y t q =0  "2z(q)+2 Ih,(u--(--a) n 2)-h,(u)lq[/~(h,(u))] du (22) 
_ a2 

Recalling that (12) is equal to the sum of (14) and (18) and that this holds 
for all values of n, we obtain 

o , 2 7 : ( q ) l ~ g t ( h , ( u ) ) l q = o " c ( q ) [ ~ l [ ~ l ( h , ( b l ) ) l q - l t - I  ~'~2 [/~l (h,  (u)) [ q (23) 
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We now interpret Eq. (23) as an eigenvector equation in the space of 
coordinate changes which relate a map on the critical manifold to the fixed 
point f , .  This defines the "second" RG alluded to earlier. Clearly, the 
second RG is slaved to the first one, since it depends on h. ,  or equivalently 
f , 1 ,  whereas the first RG can be defined completely independently 
from the second. Because of definitions (15) and (19) for ~1 and ~2, 
the last equation is Eq.(3.33) of Kadanoff, (1) with the following 
correspondence between notations: h.  --, 0, e2 o f ,  1 o c~-2 ~ ]~, [A'I u ~ ~, 
q ~ - ~ ,  Io~[q~rr(ql----r2. Kadanoff has also given a numerical scheme to 
solve (23). 

Here, we remark that the set of r(q) can be found analytically within 
the linear approximation for the fixed point of the renormalization group. 
Actually, this corresponds to the first-order solutions of Kadanoff.(1) In this 
approach, f .  is approximated by a linear function [-see Eqs. (6.9), (6.10) of 
ref. 3] on the interval [c~ 1(1-c0 -1, c~(~-1) - I ]  with a slope equal to 
[~(c~ + 1)]-1. In that case, the dominant eigenvector is simply the identity 
function h(x)= x, giving the following expression for r(q): 

r(q) = l n - ~  in ~lc~r-q(1 + {1 + 4[e(c~ + 1)]q} ~/2) - 1 (24) 

The numerical values obtained from Eq. (24) are reported in Table II of the 
preceding paper. Although the linear approximation gives a very accurate 
numerical estimate of z(q), going beyond this approximation is worthwhile 
since, as we now discuss, it is then possible to make further analogies with 
other problems. 

We emphasize that it is only in the linear approximation that the 
identity function on the domain of definition gives the leading scaling 
behavior for the multifractal moments. In the real case where the fixed- 
point function f ,  is not approximated, each q in (23) associates to the qth 
multifractal moment a particular set of coordinate changes. As found by 
Kadanoff, the q ~ -oo  eigenvector can be found exactly from the fixed- 
point equation. In that limit, the RG for multifractals is given by N2 [cf. 
Eqs. (19) and (23)] and the eigenvectors are ~(x)= ( f , 1  o~ 1)p (p real). 
Since A is at least once differentiable, p = 3 corresponds to the dominant 
eigenvector and the multifractal exponents are asymptotically given by 
T(q) = -3q  In I~l/ln(a). On the other hand, as q tends to infinity, N1 gives 
the most dominant contribution and the eigenvector is still the identity 
function ~(x)= x. In general, the leading scaling behavior as given by ~(q) 
comes from the most dominant eigenvalue of the second renormalization 
group equation (23). For each value of q, then, the set of all eigenvectors, 
dominant plus nondominant, paves the critical manifold of the golden-mean 
fixed point~ 
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From the perspective of critical phenomena, these results may be seen 
as follows. The critical manifold of the usual first RG is a space of functions 
which are related to each other through once-differentiable coordinate 
changes ~ which preserve the cubic inflection point at the origin. These 
changes of coordinates constitute the gauge symmetry group of our 
problem. Since the second RG associates to each value of q a different 
eigencoordinate change d in function space, the multifractal moments, 
which are characterized by this second RG are in this sense gauge 
symmetry-breaking perturbations, since each value of q becomes associated 
with a particular coordinate change ~. Note also that we use the term 
"dominant" instead of "relevant" for v(q) because the sign of ~(q) is not 
what determines wether the corresponding multifractal moment is 
asymptotically observable or not, since the sign of ~(q) can be arbitrarily 
changed by trivial rescaling of the distance at each iteration. All this is akin 
to multifractals in percolation, where each multifractal moment is 
associated with its own symmetry-breaking operator (in replica space) ~6) 
and where there is also an arbitrary rescaling factor characterizing the 
multifractal properties. 

4. U N I V E R S A L  RATIOS 

Generally speaking, the existence of a renormalization group for 
observable quantities suggests that universality follows simply from a 
decomposition of these observables on the eigenvectors. Detailed proofs in 
the present case, however, do not appear straightforward. In this section, 
we demonstrate instead heuristically that the set of ratios derived in the 
previous paper are indeed universal. To proceed, we concentrate on the 
Fourier coeff• of the functions Mq(Fn, h(Ul) ) defined in Eq. (5). At the 
critical point, these Fourier coefficients obey a fixed-point equation [see 
Eqs. (41) and (43)] reminiscent of the equation obeyed by the spectrum, 
and the scaling properties of these Fourier coefficients are corroborated by 
a numerical analysis. While relatively little can be shown for general q, in 
the special case q--1 this Fourier analysis approach allows us to make a 
connection with the power spectrum which does have universal properties 
(see, e.g., refs. 3 and 4). 

First, we discuss the problem of taking the average for the multifractal 
moments. Then, we shall consider their Fourier coefficients. 

4.1. Invar iant  M e a s u r e  and M u l t i f r a c t a l  M o m e n t s  

As before, let h be the homeomorphism which conjugates the map to 
a pure rotation. Because we are interested in proving the universality of 
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averages, we can consider Mq(Fn, h(Ul) ) instead of mq(Fn, Ul) in the 
average over Ul. More precisely, it can be proved that averaging 
Mq(Fn, h(ul)) over Ul with respect to a uniform density gives the same 
result as averaging Mq(Fn, Ul) with respect to the invariant measure 
associated with f Below the critical line, this statement can be proved as 
follows. 

Let f be a circle map. We call the invariant measure associated with 
f the probability density Pf(x) which is such that 

pr(x) = P•(f(x)) ~x (25) 

on the domain of definition of f .  Let R~, acting on the coordinate y, be 
related to f by a differentiable change of coordinate x = h(y). In other 
words, we assume that 

f o h = h o R ~  (26) 

The probability density Pm associated with R0. is then related to Pz 
through a change of coordinate 

PRo(Y) = Pj(h(y)) Idh(y)/dyl (27) 

Since the successive iterates of one point by a pure rotation with an irra- 
tional mean winding number cover uniformly the circle, the invariant 
measure associated with a pure rotation has a constant density. One can 
then check that Pf(x) obtained by Eq. (27) with PRo(Y) a constant indeed 
obeys Eq. (25) and is the invariant measure. 

Our preceding statement is now proved since 

S Mq(F~, h(ul)) dul = Mq(Fn, h(Ul)) PRo(u~) du~ 
O-2 __ O-2 

fo 
= _,~2 Mq(F~, h(u~)) Pj(h(Ul)) dh(u~) 

= ~(~ 1~-1Mq(F~, x) Pi(x) dx (28) 
J(~_ 1)-1 

where we have discarded the absolute value, h being a strictly increasing 
function. 

This discussion can be generalized to the case where the average of 
multifractal moments is performed with an arbitrary density and at 
criticality. Because our argumentation is more technical, it is reported in 
Appendix A. 
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4.2. Fourier Coeff ic ients of the Mul t i f rac ta l  M o m e n t s  

Since, as shown in I and in Appendix A, the universal ratios 
correspond to averages over the invariant measure of f,  it is more 
convenient to work directly with the function mq(Fn, h(ul)), whose Fourier 
coefficients are given by 

f 
~ 

aq(k, fin) -=-" du e2zikUMq(Fn, h(Ul) ) 
__ 0.2 

S = 1 ~ due2~ikulh(k(r~ (29) 
Fn+ l l <~l<~Fn+l _0 .2  

Changing variable to y = RZ(u) and using the periodicity of the integrand, 
we are left with 

1 
aq(k, f in ) -  

F n + l  l < ~ l < ~ F n + l  
f 

0.  

e -z'~ikt~ ]h(u-  ( - r r ) " ) -  h(u)tqe z~ik~' du 
-- ~r 2 

1 e 2~ik0. 1--exp(-2ni f in+lak)  
= fin + 1 1 - exp( -- 27rika) 

(30) f'~ ih(u_(_~r)n)_h(u)lqe2~iku du 
~2 

Clearly, the universality of amplitude ratios is related to that of the Fourier 
coefficients. For  example, we consider in the sequel the following 
quantities, which correspond to A(q, 0; 2, 0) [defined in Eq. (16) of I]:  

(([Mq(fin, x)]2))  laq(k, fin)l 2 (31) 
((Mq(fin, x)))  2 = Z aq(O, fin)2 k r  

and we show that its universal value follows from the fact that the low- 
frequency [-o9 = ka mod(1) ,~ 1 ] Fourier coefficients ak obey a universal 
scaling relation and that they give the dominant contribution to the ratios 
A(q, 0; 2, 0) in the infinite-fin limit. 

The picture which will emerge from the analysis can be summarized as 
follows. By taking a frequency scale co = k~r - mk, 0 ~< O9 < 1, one defines a 
time scale which corresponds to a pure rotation with a rational winding 
number mk/k. To take the limit co goes to zero thus amounts to considering 
the periodic components of the multifractal moments with better and better 
approximations of the golden mean. These periodic components are at the 
scale of rational pure rotations and universality is recovered in the small-o) 
limit, but not in the general large-k limit. Actually, the situation is very 
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similar to the problem of the frequency spectrum associated with maps on 
the critical manifold, where universality appears only in the co ~ 0 limit. 
Both problems are indeed closely related, since it is shown in Section 4.2.2 
that the Fourier coefficients of the q = 1 moment can be expressed in terms 
of the spectrum of the map. For the corresponding q = 1 amplitude ratios 
defined in I, we show that one gets rid of the nonuniversal corrections to 
scaling by taking the finite time scale F,  to infinity. 

4.2.1. Arbitrary Value of q. Let us first consider heuristically the 
general q case. Restricting ourselves for the moment to the linear 
approximation of the fixed point, it is now shown that the Fourier coef- 
ficients have a scaling behavior. 

For general q, let us define the fixed-point function S*(co, (_0-)n) by 

S S*(co, (-0-)~)=- e 2~iky [ h , ( y - ( - a ) n ) - h , ( y ) l q  dy (32) 
_ a 2  

where the frequency co, corresponding to an integer k, is defined as before 
as o~ - k0- mod(1) (0 ~< co < 1) (hereafter, we shall use alternatively k or co 
for convenience). By using the linear fixed point relation Eq. (6.12) of Rand 
et al., (3) namely 

f ~ - l h , (  - 0/0-), - 0-~ < 0 <~ 0-~ 

h*(O)-- [(1 + c~ 1)h , (O/a2-1 )+l / (1 -a )  ' 0-3<-..0~0- 

we observe that 

f 
~ 

e 2~iky Ih,(y - ( - 0-)~) - h,(y)[ q dy 
_ if2 

;o 
=0-[~[-q e 2 ~ i ~ k y l h , ( y - ( - 0 - ) n - 1 ) - h , ( y ) l q d y  

_ if2 

fo =0-211+~ llq e:'~k~2(Y+l) lh,(y--(--0-)n 2) -h , (y ) lqdy  
_ if2 

(33) 

By using arguments similar to those of Rand et al. [see ref. 3, Eq. (6.16)], 
we find that Eq. (33) shows that in the limit co--, 0, Sq(co, (_0-)n) obeys the 
same fixed-point equation as the one previously derived to find r(q) in the 
linear approximation, namely 

S*(co, (-0-)") = 0- I~1-qSq~(O)/0-, ( _ 0 - ) n  1) + 0.2 I1 + 0(-  11 qSq~((-o/0- 2, ( - 0 )  n - 2 )  

(34) 

822/6l/3-4-10 
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This then demonstrates that the fixed-point function ~* Sq(co, ( - i )  ") is a 
generalized homogeneous function of its arguments, so that 

Sq@(O), (__if)n) = i(z(q)+ 1)~q@(O)/i, (__i)n-l)  (35) 

in the limit co--+ 0. 
Before proceeding with the Fourier coefficients (301, let us first 

organize, following ref. 3, all integer numbers k into bands according to the 
value of co = ka mid(1 ). For  all positive or negative integers k, we may find 
a positive initeger j such that 

as+ 1 <~ co = k i  m i d ( l )  ~< i s (36) 

where the Bj band is defined as the interval [a  J+l, as]. Because a is 
irrational, there exists a one-to-one correspondence between an integer k s 

and a value of co j=k / rmod(1) .  Moreover, there exists a one-to-one 
correspondence between the bands: For each k s of B s, one can find a 
unique integer kj ~ of Bj_ ~ such that 

cos = ~rcos 1 (37) 

To prove this statement, recall that all co are of the form co = k i - m .  By 
using a2=  l - a ,  one demonstrates that the operation i ( k a - - m k ) =  

--i(m~ + k ) +  k defines a one-to-one relationship between two contiguous 
bands. 

Since all frequencies are of the form at(ra - s), with l, r, and s integers 
which are uniquely defined given a value of ka, we use the following 
identities [recall that F.  = Fn 1 - -  ( - - i )  n]  

atFn ( _ l ) , + t a ~ + ,  1 1 - ( - a - z )  n 
= �9 l>~n (38a) 

1+  o_-2 , 

i % = F .  l+ ( -1 ) "+L  i ~ 1 - ( - ~  ~)' l + a _  ~ ; l< .n  (38b) 

to rewrite the Fourier coefficients in the l and n infinite limit as 

a*(co = ~ ' (r i  -- s), (-- i ) " )  

~-(--1)n+t(l+i-2l-lin-2'Fri-l+s]S*(co,(-itn), l~n (39t 
g.+l  L r-g--s j 

So, in this limit, they obey the same scaling equation as the Fourier 
transform S*(co, ( - i)"),  namely 

a*(co, (-a)")_~a{~{q}+l}aq*(co/a, ( -  o-)" 1) (40) 
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To check this scaling property, then, it suffices to concentrate on 
Sq((~, ( -a)~) .  Because of the analogy with the spectrum at the golden- 
mean rotation number, we further hypothesize that ~q(e), ( - a )  ") is self- 
similar from one band Bj to another. In other words, we postulate that 

S*(o9=rrt(rrr-s), (-rr)~)=a"(~(q)+l)S*(co=ra-s,  1) (41) 

In this general q case, we resort to numerical simulations to verify (41). As 
a consequence of unique ergodicity, we have 

Sq(O), ( - G )  n) = e 2~igy ]h (y -  ( - f f ) n ) -  h(y)lq dy 
rr2 

1 
= lira 

N ~ ~  N o < ~ I < ~ N _  1 

1 
= lim ~, 

N-*~176  No<~I<~N 1 

e2~ikl~O) Ih(k~z+ F~(0)) _ h( R(l)(O ) )l q 

e 2~kit~ If(t+F~ q (42) 

which can be numerically evaluated for finite N. Figure 2 provides a check 
of the n dependence of Eq. (41) for two frequencies and various value of q 
through a plot of ln[Re(Sq(CO, ( - a ) n ) ]  versus ln[an]. Figure 3, on the 
other hand, provides a verification of the l independence of Eq. (41), i.e., of 
the fact that it is self-similar, by plotting Re(~q(~O, ( -a)n) /a  n~(q~) for q =  2 
and n--17. In the frequency domain considered, the principal peaks 
corresponding to o -j, j =  5, 6 ..... 9, are well reproducible from one band 
to another. Other peaks are more sensitive to finite-size corrections 
corresponding to our relatively small value of n, but our numerical results 
support at least qualitatively the self-similar property of So(e), ( - a ) n )  and 
hence of the corresponding Fourier coefficients. Note that, by contrast, the 
scaling limit for the amplitude ratios is reached at much smaller values of 
n (n ~ 8 instead of n ~ 17). 

To show that the set of A(q, r; l, m) is universal, the mathematically 
correct procedure would be to project on a complete basis of eigenvectors 
of Eq. (23), and to retain the dominant eigenvector corresponding to each 
value of q. In this way, the Fourier coefficients should be of the form 

aq(CO=ffl(r~--s), ffn)'~Aqffn(~(q)+l)a~(og=r~--s, 1) ( 4 3 )  

where Aq is a nonuniversal constant corresponding to the projection onto 
the associated dominant eigenvector. Taking the ratios of the Fourier 
coefficients as in Eq. (31) eliminates the nonuniversal factor. 

To verify that the Fourier coefficients are universal apart from a 
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Fig. 2. Plot o f ln{Re[Sq(w,  ( - a ) " ) ] }  as a function of the finite-size time in(an). The numeri- 
cal data have been obtained for two different frequencies, o9 = a 4 and a 5. On  the scale of the 
figure both  results are indistinguishable. Curves i =  1,..., 5 correspond to a multifractal 
moment  of order  q = i. In the scaling limit, n ~ ~ ,  all curves tend to an asymptote  whose 
slope Sq is given by the corresponding multifractal exponent ~(q) + 1. In all cases, a numerical 
fit gives a value of v(q) which compares  well with the values listed in Table II  of I 
(sl = 0.66 T- 0.01; s 2 = 1.81 T- 0.01; s 3 = 2.49 T- 0.02; s 4 = 3.07 T- 0.02; s 5 = 3.61 T- 0.02). 

normalization factor, Fig. 4 shows the ratio of Sq(w, F,) for the maps 
defined in Eqs. ( la)  and ( lb)  of I. In the low-frequency limit, all the curves 
tend to constant, thereby corroborating Eq. (43). 

4.2.2. q = l  M u l t i f r a c t a l  M o m e n t  and S p e c t r u m  of the  
M a p .  For q-- 1, the Fourier coefficients can be expressed in terms of the 
spectrum corresponding to the map f. By definition, this observable f(w) 
is given by (3'4) [w = ka rood(l)]  

1 u 1 
~(w) = limo, ~ ,~=o exp(2rcikIa) I f (~  - R(')(0)] 

f 
G 

= exp(2~iku) [h(u)-u]du (44) 
_ ~ 2  
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Fig. 3. Plot of Re[Sq(co, ( - a)")] cr n(l +,lq)~ as a function of co for q = 2. The principal peaks 
correspond to nco= ~m, m = 5, 6 ..... As explained in the text, all co can be written as a~(ra - s), 
where ~ Z < r ~ - s < a  and l =  1, 2 ..... Bands are defined by the intervals [a/+1, ~l], l =  1 ..... m. 
As in the case of the spectrum for maps of the cricle at the critical golden-mean rotation 
number,  the function depicted here is self-similar from one band to another, i.e., 
is independent of l for any given set of frequencies which may be written in the form at ( ra  - s). 
This result is explicitely demonstrated in the text in the case of q = 1, where it is shown that 
S~ can be written in terms of the spectrum. In the limit where co goes to zero, the function 
Sq(co, ( - ~ ) " )  is universal apart  from a nonuniversal multiplicative factor (see Fig. 4). 

where definition (4) for the homeomorphism and unique ergodicity are 
used to derive the second line of (44). 

From the work of Rand et al., f(co) is universal in the co --, 0 limit and 
obeys the scaling relation (the subscript star is used to underline this 
universality) 

7,(co) = co 1 (45) 

which is going to be related to Eq. (32) with q =  1. Anticipating what 
follows, we note that the nonuniversal corrections to the scaling limit (45) 
are of order co [i.e., O(co)]. 

To proceed, let us first express Sl(co = ~t(r~-s), Fn) in terms off(co). 
We first prove that ~l(co=~t(ra-s),F,) obeys the scaling fixed-point 
equation (35) in the co--+0 limit and then we prove that the ratios are 
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Fig. 4. Ratio of Re[Sq(co,(-a)n)] for the maps of Eqs. (la) and (lb) of I for q=2  
(curve 1 ), q = 3 (curve 2), q = 4 (curve 3), and q = 5 (curve 4). In the low-frequency limit these 
ratios are independent of co, corroborating thereby that the function Sq(co, (-G)") is universal, 
apart from a multiplicative constant, when co goes to zero. In the case of q = 1, this constant 
is equal to 1, and one recovers the case of the spectrum at the onset of chaos, where the 
universal character manifests itself in the low-frequency limit. 

universal .  F o r  n odd,  h be ing  a strictly m o n o t o n i c a l l y  inc reas ing  func t ion ,  

we have  

f ~  e 2 ~ k Y [ h ( y - ( - ~ ) ' ) - h ( y ) ]  dy 
_ ~72 

I 
S 

= eZ'ekY[h(y -- ( - - a ) ' ) -  ( y  -- ( - -  a ) n ) ]  dy 
~ 2  

f s f s - e2~i~Y[h(y) - y ]  dy - ( - a ) "  e 2'~iky dy (46) 
0-2 __ 0-2 

C h a n g i n g  to the var iab le  y =  u - ( - a ) "  a n d  us ing  ( - a ) " = F  n 1 - ~ F n  in  
the first in tegra l  leads to the fo l lowing r e l a t ionsh ip  wi th  the  s p e c t r u m  

[o0 - k a  m o d ( 1 ) ] :  

$1(e), ( - a )  ") = ( -  1)" re~ 1 --  e x p ( -  2rcicoF,)] jT(e)) (47) 

W e  have  thus  d e m o n s t r a t e d  tha t  the n o n t r i v i a l  f unc t i ona l  d e p e n d e n c e  of 
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the Fourier coefficients of the first multifractal moment is given by the 
spectrum. Writing 0) = aZ(rer - s),  we have, in the limit where 1 ~ l ~ n, 

S,(0) = aZ(ra - s) ,  F , )  

= - 2 r t i  a + s  a n l l ~ ( 0 ) = a t ( r a - s ) )  (48) 

As l tends to infinity, 27 tends to the universal functional 27, and, because 
of Eq. (45), 

( - a ) - ' f ( 0 )  = a ' ( r a  - s ) )  

tends to an/-independent un iver sa l  c o n s t a n t  given by 

( - ~ ) - ' L ( 0 )  = ~'(ro --  s ) )  

Recalling that v(1)=0, this proves that Sl(0)=~1(rr s), F,) obeys the 
fixed-point equation (35). 

To prove the universal character of the ratio defined by Eq. (31), we 
now proceed in close parallel with the reasoning of Rand et al. for the 
spectrum. It is shown that the low-frequency peaks give the dominant 
contribution to the q= I moment. As discussed above, its universal 
character will follow. 

Let us for the moment neglect the nonuniversal terms of order 0). This 
statement is equivalent to replacing 27(0)) by its low-frequency universal 
limit 27.(0)), which also obeys the following self-similarity relation at the 
golden-mean winding number: 

27,(0)) = - a f , ( 0 ) / a )  (49) 

for all 0) in [0, 1]. It will be demonstrated hereafter that the 0(0)) terms 
neglected in Eq. (49) do not contribute in the infinite-Fn limit. 

As a next step, the sum (31) can be rewritten by considering all 
integers ko of the Bj=o band. Making use of the correspondence between 
the bands, we now express Eq. (31) as [0)o = koa mod(1) ] 

Z [ Z (50) 
ko~B o L/>10 J 

and, by using Eqs. (30) and (47), we find that each ko term contributes to 
the sum as 

~, (1 + a  2) 1 --exp(-2rciFn+ 10)oCt t) 0)o at 2 
t~>o 1 - exp( -- 2rti0)o a l) [1 - exp( - 2rci0)o o-tF,) ] 

x I(ooa~-zf,(0)oO-Z)l 2 (51) 
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Finally, the exact self-similarity of the spectra allows us to replace the last 
factor by its /-infinite limit, which depends on COo, but not on l. The 
universal ratio A(q, 0; 2, 0) is obtained by summing over all COo of the B o 
band. 

Although the convergence of the series given by Eq. (51) can be 
proved, since the general term scales with n as 

[a(COo at, Fn)12/la(O, Fn)[ 2 ~ o "4In-/I ICOo la-t~,(cooal)[ 2 (52) 

for l>>n>> 1 and 1 ~ l ~ n ,  a numerical analysis shows that this series 
defines a highly fluctuating function of COo which cannot be approximated 
by a polynomial in COo. The scalling behavior of Eq. (52) can, however, be 
useful to understand why nonuniversal corrections are eliminated in the 
n-infinite limit. From (6.7) of ref. 4, we write that the spectrum is universal 
with corrections that vary as CO, 

COo lo--lf(coo~ t) = coola- l f , (cooat ) [1  + O(COoC#)] (53) 

As a consequence, these corrections contribute to the universal ratio by an 
amount of order a n and can thus be discarded when n goes to infinity. 

Finally, we note that the above results have answered two kinds of 
questions. First, we have demonstrated that the fluctuations of the multi- 
fractal moments are scale independent in the sense that the finite time scale 
F,  enters the Fourier coefficients only as a power of 0 - r (q )+  1, as can be seen 
from Eq. (41) and the arguments that followed. This demonstrates also that 
the successive powers of any multifractal moment scale with a trivial 
exponent given by a linear function of r(q). This is the gap scaling property 
analyzed in I. Second, it has been shown that the universal character of our 
multifractal analysis comes from the low-frequency part of the Fourier 
coefficients [ka rood(l)  ~ 1 ] and not from the infinite-k limit, in complete 
analogy with the case of the spectrum. 

5. C O N C L U S I O N  

In the first part of this paper, a simplified version of the renormaliza- 
tion group analysis of Kadanoff ~1) for the multifractal properties of maps 
of the circle has been presented. From Eqs. (21)-(23), this transformation 
acts on the space of coordinate changes which relate a map on the golden- 
mean critical manifold to the fixed point of the usual RG for maps of the 
circleJ 3-5) This RG is a "second" RG in the sense that it depends on the 
fixed point of the usual RG for maps of the circle, whereas the latter can 
be defined without reference to the former. While the usual RG does not, 
by itself, give the set of z(q) as eigenvalues, the derivation shows that all 
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that the second RG does is to extract the multifractal information on the 
critical manifold from the fixed point of the usual RG. 

In the case where the fixed-point function of Rand et al. (3~ is not 
approximated by a piecewise linear function, the eigenvalue equations 
which given the multifractal exponents break a symmetry property 
reminiscent of a global gauge symmetry. More specifically, although the 
critical manifold is globally invariant under all changes of coordinate 
preserving the cubic inflection point, the multifractal moments select on 
this critical manifold different eigendirections according to the order of the 
multifractal moment considered. To each multifractal moment, then, is 
associated a "dominant" (largest) eigenvalue from which r(q) is extracted. 
The other eigenvalues are "nondominant." From our point of view, the 
characterization of operators as relevant or irrelevant is ill adapted to the 
multifractal analysis, for two reasons. First, a symmetry-relevant eigenvalue 
usually means the fixed point considered is unstable toward other fixed 
points with different symmetries. Such fixed points cannot be identified 
here. Second, a trivial length rescaling at each iteration can shift the 
v(q) from positive to negative, and this cannot generally be done in a 
standard RG analysis. 6 The situation depicted here is analogous to the case 
encountered in percolation. (6) 

In the spirit of I, we have also, in Section 4, analyzed the multifractal 
moments as functions of the starting point of the series which define them. 
It was shown that the Fourier coefficients of these functions obey a fixed- 
point equation which gives 0 " r (q )+ l  a s  eigenvalues. This has demonstrated 
the gap scaling of the previous paper, or in other words, the scale- 
independence property of the normalized fluctuations of the multifractal 
moments (as a function of the starting point). As in the case of the 
spectrum at the onset of chaos, we note that universality is recovered in the 
low-frequency limit, where the system is probed at time scales which 
approximate the golden mean. In the general case, this characteristic 
property has been numerically corroborated and we have shown that the 
Fourier coefficients of any multifractal moment can be written in a scaling 
form [cf. Eq. (40) or (41)] reminiscent of that obeyed by the spectrum at 
the onset of chaos, where not only universality, but also self-similarity, are 
recovered at the critical golden-mean rotation number. For  the dependence 
of the first multifractal moment on the starting point, the analysis has been 

5 For a mathematical study of the invariant measure at the critical point, see ref. 12. 
6A notable exception is the Gaussian fixed point for a ~b 4 theory, but, in that case, relevant 

eigenoperators become dangerously irrelevant and this is not the case in the context of maps 
of the circle. For more discussion of multifractals in the context of standard critical 
phenomena, see ref. 13. 
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analytically pushed further, emphasizing the connection between multifrac- 
tals and the spectrum at criticality, both problems being essentially the 
same in this case [cf. Eq. (48)]. We have, moreover, demonstrated in 
Appendix A that the universal ratios defined in I are independent of the 
probability distribution with which the starting point is drawn. This means 
that our statistical point of view is consistent and can be carried out in 
practice. 

Finally, since the dependence of the multifractal moments on the 
starting point is characterized by the analog of universal spectra, and in 
particular by the usual spectrum in the case of the q = 1 moment, our 
statistical approach to this dependence on the starting point can be 
considered as an alternative route to access the universal properties of the 
spectrum. We emphasize that the scaling regime for the universal ratios is 
much more easily accessible than for the spectrum, a point which should 
be important for experiments. 

APPEN DIX A. AVERAGED MULTIFRACTAL M O M E N T S  
DO NOT DEPEND ON THE 
A PRIORI PROBABILITIES 

Let us first recall Eq. (11a) of paper I, 

Mq(Fn, Xl )  = Mq(Fn, f(xl) ) 

1 
+ F---~+ l { If(F~}(Xl)-- x l l q - -  [f(I'n)(XFn+lW1)-- XFn+t+ llq} 

(A1) 

We know that 

[ f ( F " l ( X l ) - - X l [ q <  If<F")(0)--01 q forall xl 

The scaling near the origin is also known since the work of Shenker: 
[f(r")(0)l ~ c/Ic~l n, where c is a positive constant. Hence, we can write that 

1 
- -  I f (F")(Xl)  - x l  I q <~ cF~-+~ (q)- 1 (A2) 
F,,+ l 

where 

lnlctl 
z ~ ( q ) -  lno- q (A3) 
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Since the last two terms in the bracket in (A1) are bounded by the same 
quantity, the absolute value of their difference is bounded by twice the 
right-hand side of (A2). Defining SJq(Fn, x l ) -  Mq(Fn, xl)/F~+~ q)- 1, we can 
thus write 

~r x~) = ~r f ( x l )  ) + E(F,, xl) (A4) 

where 

" )pFz(q)  -- v~(q) ]E(F., Xl) I <--~n+ I (A5) 

Denoting the right-hand side of this equation by E for short, and 
supposing that the starting point Xl is sampled with an a priori probability 
~,  we can find an upper bound to the average of ~r xl) over the 
starting point xl, 

(S~r = dq(Fn, Xl)d~.@{x1} (A6) 

namely, 

O l {~q(Fn ' X l ) - t -  E~'~q (Fn' X2)  A P E ]  + , . ,  

+ [(dq(Fn, xL)+ ( L -  I)E]} d~{x ,}  (A7) 

This upper bound is equal to 

f0 1 1 Z1 {dq(F,, xl)+SCq(Fn, x2)+ -.. +SCq(Fn, xL)} d~{xl}  +-~ ( L -  1)E 

(A8) 

The rest, (L-1)E/2, is equal to 

( L - 1 ]ppz(q) zoo(q) (A9) 1 ~ n  + 1 

which, because r ( q ) - r ~ ( q ) < 0 ,  vanishes for any arbitrarily large L, as 
long as n is large enough (n goes to infinity before L). A lower bound to 
the average moment (A6) is the integral of the sum, minus ( L -  1)E/2 as 
rest, instead of plus as in (A8). Clearly, then, in the limit of large enough 
n, the average multifractal moment (A6) becomes equal to 

f i t  {4(Fo ,  ... (Mo)  Z 
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That integral can be rewritten by using changes of variables x~ = ~,(i)(xi) 
with O - f  1; O(k)_Oot)oOoO . . . .  ~; k times. The problem of the 
independence with respect of the a priori probability is then rephrased in 
terms of the convergence for probability laws 

lim 1 L~o~-L {~(x)+~(~/(x))+~(~9(2)(x))"'" + ~(~(L)(X))} (Al l )  

for an arbitrary distribution of the starting point. The proof of the con- 
vergence of this equation to the invariant measure for almost all ~ can be 
found in ref. 11. Then the average multifractal moment (A6) is independent 
of ~ ,  a result that can be checked numerically (see Table I of I). By a 
similar argument, the moments of the dq, and by extension the probability 
distribution of the multifractal moments itself, are independent of the a 
priori probability distribution with which the starting point is drawn. 

APPENDIX B. DERIVATION OF EQS. (1) AND (5) 

Equation (5b) establishes a correspondence between the problem of 
multifractal moments and that of differentiability of the conjugacy to a 
pure rotation. It is this correspondence which allows some analytic work, 
and, as we see below, the connection is most natural when one works with 
multifractal moments which are averaged over the starting point. 

First, let us prove (7) Eq. (1). For this, it suffices to apply gn to f(x).  
In this way, one finds 

1 ~ [f(k+~)(x)_kp] g, of(X)=n k=l 

1 n + l  

= -  ~ ,  [f(k)(x)--(k-- 1)p] 
H k = 2  

But, by definition of a pure rotation, one has 

Ro(g,(x)) = g,(x) + p (B2) 

and by definition of the mean rotation number (8) 

lim _1 [ / ( , ) ( y ) _  Y] = P (B3) 
n ~  n 

which is independent of x. QED 
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The main statement which we wish to prove in this Appendix is that 
the closest-return distances averaged upon the starting point are related to 
the conjugacy homeomorphism through 

( 1F~, ' ) f/ ,=1 If(F")(X')--Xilq = I h ( u - ( - ~ ) n ) - h ( u ) l q  du (B4) 
where by definition xi=-f  (i 1)(xl), 1 <~i<~F,+i, f(e~176 and 
h o Ro = f o  h. The following proof is valid when the conjugacy h = g 1 is 
differentiable. At the critical point, where this is not the case, the statement 
(B4) is justified a posteriori by the approximate RG results obtained in 
(24), which are in good agreement with the numerical results. 

To simplify the proof, first relabel the points Xl to  f(F"+t+F"-I)(XI) 
appearing in the sum in (B4) as follows: Let 5Cl--f(F"+~-~)(Xl) and 
~ i - f ( - i+1) (51)  with l<~i<~Fn+ 1. Because the mean values of the 
moments are independent of the a priori probability distribution for the 
starting point (see Appendix A) and are therefore independent of whether 
the average is taken over the first of or any other point of the iteration, let 
us average with a uniform probability distribution over the point f(ff,) .  
One then finds 

1 F'~"~ 1 f /  IJ~(F")(.2,) - "2il q d(f(Yq)) 
Fn+l i=l  

1 F~ir ' -  Fd f (~ i ) ]  
-F,,+~ '-'Jo,=~ If(F%L)--LI q L d~, ] dff, 

1 Fsm+l 1 Fd(f(i)(xi))] 
=F.+x,=lfO If('~")(L)-LIqL ~ A dL 

1 F~ 1 1 rd(f(~ 
--Fn+l i=1 fo [?(Fn)(X)--X[qL ~X jdx 

1 {1  F~ld(f(i'(x))~ 
=fo If(F~ ~ + 1 , = ,  dx j dx 

= f j  I f ( F " ) ( X )  - -  x l "  dg ,~o+, (x )  (B5) 

where we have used Eq. (1) for the definition of gv.+~(X). For finite n, 
gF.+I(X) is everywhere differentiable. One can then change variable to 

--1 x = gg.+l(U) in the last integral to find 

fO ~(Fn)[cr-11(U))- gLl (u)[ q du (B6) d t&F~+ 
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By definition of conjugacy to a rotation, one has 

f(F")(gFI+,(U))= f(F")(gvl+I(U))--F. 1 

= f ( F , ) o g  logogrl+l(U)__Fn_l 

= g lo R(rn)o go gF1. ~(U) -- Fn-1  

g-1 [go - 1  = o g F o + , ( u ) -  (-0)"] 

because 

R(~F")(X) = X +  Fno = X +  F , _  , - ( - 0 )  n (B7) 

As n tends to infinity, (gr,+l) 1 tend to g-l ,  so that one can write 

go g~l§ = u + ~.(u)  (BS) 

where en(u) tends to a function identically equal to zero as n goes to 
infinity. We then have that 

g - l o [ g o g [ ~ l  ( u ) _ ( _ o ) ,  ] 1 -- gF.+I(U) 
g l [ g o  1 = o gF,+~(u)-  (--o)"] - g 1o [go gFI+I(U)] (B9) 

can be approximated by 

g l ( u -  ( - 0 ) " )  - g - ~ ( u )  + terms smaller by a factor of order en(u) (B10) 

when g - t  can be expanded in Taylor series. After replacing the first-order 
approximation (B10) in Eq. (B6), and using g ' - h, one has the result of 
Eq. (B4). 

An alternate proof of (B4) follows the steps of Eqs. (25)-(29) by con- 
sidering the invariant measure associated with the m a p f  In Eq. (B5), 
dgF,+, approximates this invariant measure [see Eq. (27)] and by changing 
the argument in (B5) to x ~ h(x),  one gets directly the desired result (B4). 
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